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We consider a model of a freely expanding gas cloud of tri-axial ellipsoidal shape, 
Gaussian density profile, proposed by Dyson (1968). The ellipsoids are deformable, but 
are further constrained here to have principal axes maintaining a fixed orientation in 
space: the study of the more general rotating flows is deferred to a future work. Our 
main result is that, when the fluid is a monatomic gas with adiabatic index y = 5 / 3 ,  the 
model is completely integrable by quadratures. Solutions starting from a state of rest 
are describable by elliptic functions ; the generic solution however is a more general 
transcendent that cannot be reduced to elliptic type. 

The complete integrability of Dyson’s model may be ascribed to the fact that it 
possesses the Painleve property (Ince 1956; Ablowitz & Segur 1977), meaning, 
essentially, that the solutions are meromorphic functions of the independent variable, 
admitting only pole singularities. However, the correct choice of independent variable 
here is not just the physical time t :  rather, it is the thermasy (van Danzig 1939) 
u = Tdt, which is one of the potentials occurring in the Clebsch transformation. 

Further investigation will be required to test Dyson’s full ‘spinning gas cloud’ model 
for an eventual Painlevt property. 

1. Introduction 
A mass of incompressible fluid, under the influence of gravitation and pressure 

forces, adopts an ellipsoidal equilibrium shape : exact configurations were discussed 
first in detail by Dirichlet (1860); Dedekind (1860) and Riemann (1861); they found the 
most general solution possible, under the crucial assumption that the velocity field has 
a linear dependence on the spatial coordinates. A remarkable feature of this 
assumption is the existence of a particular symmetry, Dedekind’s Duality Principle, 
according to which the vorticity and angular momentum vectors play symmetrical 
roles. From a group theoretic viewpoint, the ordinary O(3) rotational invariance of the 
Euler equations of motion gives rise, by the duality principle, to a new O(3) group 
which is its image, and thus to an enlarged symmetry group 0(4), since O(3) x O(3) is 
isomorphic to 0(4), the four-dimensional rotation group. 

These intriguing features have attracted the attention of many researchers, who have 
sought to generalize the theory and to improve the understanding of the known results, 
such as Chandrasekhar (1969), Carter & Luminet (1985), and many others. It would 
certainly be interesting to have a generalization of the theory to the case of a 
compressible fluid, but that has proved to be difficult. 

In a remarkable article, entitled ‘Dynamics of a spinning gas cloud’, Dyson (1968) 
has shown that ellipsoidally stratified compressible fluid configurations which preserve 
an ellipsoidal shape in the course of their evolution, are indeed possible provided that 
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the force of gravity is neglected. The ellipsoids are tri-axial, of time-dependent shape 
and orientation, and the fluids motion combines expansion, rotation and vorticity in 
the most general case, which is described by an ordinary differential system of order 18. 
These results are still based on the assumption of a velocity field linear in the 
coordinates. 

In the present work, we restrict ourselves to a consideration of the case without 
rotation, which is described by a sixth-order differential system. Our main result is that, 
when the fluid is an ideal monatomic gas, characterized by the adiabatic index: 

Y = 513, 
the equations constitute a completely integrable mechanical system, whose integration 
can be reduced to quadratures. 

2. The model 
We summarize here the main features and governing equations of Dyson’s spinning 

gas cloud model. The central assumption is that of a linear relation between Eulerian 
coordinates xi and Lagrangian coordinates a, : 

where F(t) is a time-dependent 3 x 3 matrix. Its meaning, in Dyson’s words, is that ‘the 
entire volume of gas is assumed to flow by a continuous affine transformation of the 
space. Straight lines in the fluid remain straight, but lengths and angles in general 
change with time’. A detailed description of the fluid’s deformation is provided by the 
canonical decomposition of the matrix F :  

F = 0, DO,, 
where 0, and 0, are orthogonal matrices and D is diagonal; to quote Dyson again: 
“the (above) representation always exists, and is in general ambiguous only to the 
extent of sign-changes and permutations of the three elements (D, ,D, ,D,)  of D. 
Physically speaking, 0, defines the orientation of the gas with respect to the Eulerian 
coordinates x, 0, defines the orientation with respect to the Lagrangian coordinates 
a, and D defines the shape of the mass-distribution”. (0, determines in particular 
which fluid elements make up the principal axes.) 

= $k(t)  (2.1) 

As a consequence of (2.1), the velocity components vj are given by 

vi = <,(t) a,, (2.2) 
where the dot represents differentiation with respect to time. (Hence the linear 
dependence of o on x, mentioned in the Introduction.)? The determinant of F 
represents the degree of expansion of the fluid, and is denoted #(t):  

Differentiation with respect to Eulerian and Lagrangian coordinates is related by the 
chain rule: 

#(t) = det (4. (2.3) 

f The physical motivation for considering the simplifying assumption (2.1) or equivalently (2 .2)  on 
the form of the velocity field, lies essentially in the fact that the basic kinematical quantity, the 
deformation tensor D ,  = Saui/axx, + av,/ax,) is then uniformly distributed throughout space. That 
assumption was first introduced by Dirichlet, who applied it with great success to the problem of 
planetary figures of equilibrium, and it may be viewed as a natural generalization of the rigid flows 
that obtain when the uniform value of the deformation tensor vanishes. 



Expanding gas clouds of ellipsoidal shape 115 

where the subscript T denotes matrix transposition. Conversely Eulerian differentiation 
a/i3xi is expressed by 

where G = F;'. (2.5) 

(2.6) 

Using (2.4), one obtains the velocity divergence in the form 

div u = G,, <., = Tr (F-lF) = d/$, 
where Tr symbolizes the trace. Thus the continuity equation, 

d divu+-lnp = 0 
dt 

(where dldt denotes the Lagrangian time derivative, following the element of fluid), 
can be written 

d -1np = -614 
dt 

or, in integrated form 

(a s (al, a,, as) is the Lagrangian position vector). 

to follow the perfect gas law: 
In his work, Dyson (1968) does not constrain the fluid to be polytropic, but merely 

u,, = ut,(T), P = pT, (2. lOa, b) 

where U,, is the specific internal energy, P the pressure, p the density, and T the 
absolute temperature, normalized in such a way that (2.10b) holds. The specific 
entropy S is then 

(2.11) 

The fluid is assumed to evolve adiabatically starting from a state of uniform 
temperature distribution, which is then preserved in the course of the evolution. That 
this is so may be seen from the fact that the time evolution of temperature is given by 

(2.12) 

(from dS/dt = 0), and is thus independent of location in space. (In the present work 
we shall assume the fluid to be a monatomic gas, characterized by an adiabatic index 
y = 5/3, so that the entropy S is a function of Pip"'".) 

The momentum equation : 

takes the form, taking account of equations (2.2), (2.4), 

(2.13) 

(2.14) 
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In addition, using (2. lo), (2.9) and the uniformity of the temperature distribution, we 
have 

(2.15) 

so that the momentum equation (2.14) reads 

= 0. alnf 4, ak + TG.  
I k  aa, 

That is N (  = 3) equations on the coordinates a, ( N  being the dimension of space), and 
that system should be identically satisfied in order for the model to be valid. alnf/aa, 
should then be linear in ak (so that there may be cancellation with the linear e k a k  
terms), and therefore lnf should be quadratic. There is no loss of generality in 
redefining the Lagrangian coordinates in such a way that Inf= -a2/2, i.e. 

f (a)  = constant x exp (- a2/2). (2.16) 

(In view of the linear deformation relating Eulerian and Lagrangian coordinates, this 
describes an ellipsoidally stratiJied3uid - with three distinct axes in general.) 

With the above Gaussian profile, the momentum equation becomes 

(4, - TG,,) a, = 0, 

which is identically satisfied, as required, provided 

F =  TG s TFG,’. (2.17) 

The temperature T, or internal energy Uth(T) ,  is a given function of $ = det (F) 
(see (2.12)), and therefore also a given function of the nine components l$ of F. 
Let us calculate its gradient in that space, aU,,/aF,,: we have from (2.12) that 
dU,, = - Tdln 4, and, from 4 = det (0: 

(since a$/aFj, is the cofactor associated with the matrix element 4k). Dyson thus points 
out that the Euler equation (2.17) is of the form 

&+$ = 0, (2.18) 

which is the equation of motion of a point particle in nine-dimensional Euclidean 
space, under a force deriving from the potential Uth. 

Dyson then discusses the constants of motion: there is first the energy integral 
immediately deducible from (2.18) : 

E = i4k 6, + Uth. (2.19) 

There are the three components of angular momentum, which are here represented by 
the antisymmetric 3 x 3 matrix J :  

J = FFT-FFT.  (2.20) 

K = F T F - F T F ;  (2.21) 

By the Dedekind duality principle (which amounts to transposition of F), the matrix 
K dual to J is also a constant of the motion: 
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these three new constants represent the components of vorticity relative to Lagrangian 
coordinate axes. 

We will in the present work restrict ourselves to a consideration of tri-axial ellipsoids 
evolving without rotation, the three principal axes maintaining a fixed orientation in 
space; in such a case the matrix F must be diagonal, relative to these fixed coordinate 
axes : 

(2.22) 

(where a is not to be confused with a Lagrangian coordinate, a,), and the Euler 
equation (2.17) takes the form 

(2.23) 

a sixth-order differential system. (The constant in (2.23) is reducible by rescaling of 
either length or time, and will be taken to be unity, in what follows.) These are the 
equations that we propose to solve completely (by reduction to quadratures) in the 
monatomic case y = 5/3. 

3. Special symmetries of monatomic gas flow 
3.1. General results 

We now recall some special properties of the flow of a monatomic ideal gas, which turn 
out to be of crucial importance to the complete solvability of the mechanical system 
(2.23). 

The essential point is the presence of a symmetry of the full set of gas-dynamical 
equations (continuity equation, momentum equation and energy equation, which is 
here the adiabatic condition dS/dt = 0) governing the most general three-dimensional 
flow of a monatomic gas, symmetry denoted (T*)  and characterized by the set of 
transformation formulae 

t* = l / t ;  x* = -x/t; Y* = (ut-x); p* = pt3; P* = Pt5, (3.1) 
as was shown by Gaffet (1983). 

divergence form 
By merely applying the symmetry, the law of conservation of energy E, which is, in 

gives rise to a new constant of the motion E*, the image of E under the (reciprocal) 
transformation (T*);  by application to (3.2) of the transformation rules (3.1), we find 
that conservation of E* is expressed by 

d ( u ~ - x ) '  3Pt2 div[Pt(ut-x)]+p- ____ 
df [ 2 '-1 2P = O. 

We remark that the density associated with E*,  by unit mass, 

6E* (8t-x)'  3Pt2 +-- - 
6M 2 2P 

(3.3) 
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explicitly depends (quadratically) upon time. We have of course the freedom to 
perform an arbitrary translation of the origin of time, t --f t + to, and thus obtain a 
conserved current and density that is a second-degree polynomial in to. All three 
coefficients of this polynomial are necessarily conserved currents, two of them 
expressing conservation of E and E*, while the third, 

dt P 

expresses conservation of a new quantity, C say, with density 

(3.4) 

The constancy of .Z reflects a property of scale invariance of monatomic gas flow, and 
it may alternatively be derived through the Noether theorem. 

If we combine these three densities we obtain: first, 

SE SC x . v  = 2t--+-- 
SM SM 

and then 
x2 - SE* 8.Z SE - - - - -+ t -++2- -  
2 SM SM SM'  (3.7) 

This shows that the polar moment of inertia I of an isolated mass of monatomic gas is 
a quadratic function of time : 

- = l - d M =  1 x2 E*+tC+t2E. 
2 -  2 (3.8) 

That property is intimately related to the virial theorem. 

3.2. Application to Dyson's model 
In the present case, where we have a Gaussian ellipsoidal density distribution with 
mean axes a, b, c, the polar moment of inertia I is easily determined to be 

I = R2 = a2+b2+c2 (3.9) 
and the general results derived above (53.1) show that 

R2/2  = t2E+tC+E*, (3.10) 

where E*, C and E are three constants of the motion. Differentiating twice we obtain, 
in sequence: 

"(") = aa+bb+ct = 2Et+Z, 
dt -2- (3.11) 

3 
= (au+b6+cc)+(u2+b2+t2) = (u2++62+t2)+p = 2E. (3.12) 

Equations (3.10)-(3.12) determine the three constants of the motion E, C and E* in 
terms of the dynamical variables a, b, c and their derivatives. In particular, we note the 
relation 

R2 = 2E+(C2-4EE*)/R2 (3.13) 
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which may be viewed as an ordinary differential equation (0.d.e.) governing the time 
evolution of R ;  its solution is, of course, the quadratic formula (3.10). It is worth 
noting that equation (3.13) has the form of the equation of motion for a free particle of 
unit mass, energy E, and angular momentum (4EE* - C2)1/2, in Euclidean space. 

With the three first integrals E, C, E* obtained, our sixth-order mechanical system 
(2.23) can in principle be reduced to one of the third order. (The remaining constants 
(2.20), (2.21) of angular momentum and vorticity identically vanish in the present case, 
and thus cannot be used to further decrease the order of the system). 

3.3. Equivalence with the dynamics of a point-mass on the 2-sphere 
From now on, a E (a, b, c) denotes the three eigenvalues of the matrix F (i.e. the three 
principal axes of the ellipsoidal distribution), not a Lagrangian position vector. The 
equations of motion (2.23) manifestly constitute a Hamiltonian system in three- 
dimensional Euclidean space, and a may thus also be viewed as representing the 
position of a point particle in that space; that is the point of view that we will usually 
adopt in the remainder of this work. R = (a2 + b2 + c2)’l2 is then the customary radial 
coordinate, the Euclidean distance to the origin. 

The meaning of equation (3.13), or (3.10), is that the problem ofthe determination of 
the radial motion R(t) separates out, leaving us with the simpler problem of determining 
the evolution of the two ratios 

H G b / a ;  K = c/a. (3.14) 

Clearly, H and K are related to the angular variables of a spherical coordinate system 
(R, e, $), defined by 

(3.15) a = R cos 8, b = R sin gcos 6, c = R sin $sin 6, 
namely, H and K may be identified with 

H = tan gcos 6, K = tan gsin 6. 
1 

Letting 

Sr 1 + H 2 + K 2 3 -  
cos2 0 

(3.16) 

(3.17) 

the Euclidean coordinates a, b, c may be expressed, in terms of the new coordinates R, 
H ,  K, by 

a = R/S’12, b = aH = HR/S‘!’, c = aK = KR/#”. (3.18) 
We also have 

q5 = a3HK = R3HK/S3I2. (3.19) 
To obtain the equations of motion in this new coordinate system, it is convenient to 
start with the relation 

d a/ b - b/a -(ad-bu) = $2/3 
d t  

(3.20) 

together with two more relations which can be deduced from it by circular permutation 
of a, b, c. Equation (3.20) takes the form 

while one of the other two relations obtained by permutation similarly yields 

(3.21) 

(3.22) 
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where $ is given by (3.19). We remark that R occurs merely through the combination 
R2d/dt, in the above equations (3.21), (3.22), so that a simple and elegant way to 
eliminate R is just to introduce a modiJied ‘time’ variable: 

dt 
t* = Jm (3.23) 

where R(t) is the quadratic function of time (3.10). 
Transformations of the type (3.23) have been discussed by various authors, and also 

appear in Gaffet (1983) (see references therein) ; the symmetry (T*) considered in tj 3.1 
may also be viewed as belonging to this category (letting: R(t) = t), hence the notation 
t* for the new time-variable in (3.23). 

With this redefinition of time, the equations of motion take the form 

( IdH) -  -~ (L-H),  
dt* Sdt* (HK)2/3 H 

-!!-(A%)=-(’ 6 K) 
dt* Sdt* (HK)2’3 x- ’ 

(3.24) 

It is of course of interest to know whether this new system (3.24), is still Hamiltonian. 
In view of the symmetry of the problem and of the fact that H, K represent angular 
spherical coordinates, we would expect that if (3.24) is indeed a Hamiltonian system, 
it should describe the dynamics of a point on the surface of the unit sphere, in a 
potential. Let us then start with the Lagrangian: 

(3.25) 

where dg  is the element of arclength on the unit sphere x2 + y 2  + 2 = 1, and V, is the 
potential. We use coordinates H 3 y/x, K = z/x, and also introduce S _= 1 + H 2  + K2 
as before (note that S E 1/x2), and obtain 

dH2 + dK2 + (HdK- KdH)’ 
S2 

dCr2 = [dH, dK] [ (’ + K2); 

(3.26) 
The conjugate momenta are 

(3.27) 

The equations of motion are the Euler-Lagrange equations, and they assume the 

ix (1 + K ~ )  12- H K ~  aL (1 + H2) k- KHfi =7= 
- aH S2 ’ ‘ -aK S2 

form 

(3.28) 

where &denotes the two-vector of components fi, k and V is the contravariant vector 
gradient, using the spherical metric as in (3.26). More explicitly, they are the equations 

(3.29) 
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In order that these coincide with the equations of our model, 
replace t by t* ,  and choose a potential Vs defined by 

121 

(3.24), we need only 

This pair of equations is indeed compatible, and defines the potential 

(3.30) 

(3.31) 

This shows that equations (3.24) do indeed describe the Hamiltonian motion of a point- 
mass on the 2-sphere. In particular, we obtain the corresponding energy constant of the 
motion 

(3.32) 

where the kinetic term is given by (3.26)’ and the potential is as in (3.31). In fact, 
constancy of E is a direct consequence of the conservation of energy E of the original 
three-dimensional motion described by (2.23), as we now show. 

The definition (3.12) of E may be rewritten 

ds2 3 
dt2 ( u b ~ ) ~ ~ ~  ’ 

2E = -+- (3.33) 

where the three-dimensional line element ds2 may be decomposed into its radial and 
tangential parts : 

ds2 = dR2 -k R2 dr2,  

and where (abc) = R3(xyz), x, y ,  z being the Cartesian coordinates of the trace of the 
radius vector on the unit sphere. Thus, (3.33) becomes 

(3.34) 

3 2E= - + R 2  - + (:I (3‘ R 2 ( ~ y ~ ) 2 i 3 r  

and, if we substitute equation (3.13) for R2, and R2dt* for dt in agreement with the 
definition (3.23), we obtain 

( 4 E E * - Z ) -  ~ +- 
- ($I (&3 

(3.35) 

Thus we identify 2 2  with (4EE*-C2) ,  the squared angular momentum that appears 
in equation (3.13). 

4. The second integral, and the general solution of the system 
The equations of motion (3.24) may be simplified further through consideration of 

a new independent variable u in place of t*, the thermasy, introduced by van Danzig 
(1939), and which plays a central role in the Clebsch transformation of the velocity field 
in fluid dynamics (Seliger & Whitham 1968; see also Gaffet 1985; Carter & Gaffet 
1988) : 

u = JTdt. 
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For a monatomic gas, U,, = (P /p ) / ( y -  1) = T / ( y -  1) = qT (with the choice of 
normalization (2.10 b) that we have adopted for the temperature), and equation (2.12) 
integrates as 

T$'13 = constant; 
therefore : 

where S =  l + H 2 + K 2 .  dt Sdt* 

The simplification lies essentially in the fact that the general solution will then be 
described, roughly speaking, by uniform (i.e. single-valued) functions of the 
independent variable u;  more precisely, the differential system considered turns out to 
have the Puinleve'property (as shown in Appendix A), when u is chosen as independent 
variable. According to a celebrated conjecture (Ablowitz & Segur 1977), that entails 
complete integrability of the system. 

The Painleve property holds, not exactly for the dependent variables H,  K, but for 
the related variables U ,  V:j- 

The transformed system reads 

u H2/3 V K2I3. 

2 1 4 3  

21-v3 

( 4 . 2 ~ )  

(4.2b) 

(where a prime symbolizes derivation with respect to u), and it admits the first integral 
8: 

(4.3) 
u ' ~ ~ 2 u , v , + ( 1  + U 3 )  "01 4 

!$ = I" +;; u2 v +---(1+U3+ 3 u v  V3). 

The system (4.2) presents some hidden symmetries which reflect its invariance under 
the group of permutation of the three principal axes a, b, c;  this is discussed in 
Appendix B. We show in the Appendix that the hidden invariance properties of the 
system are made manifest through the consideration of a 3-vector X, with components 
X ,  Y ,  2, defined by (see (B 4)) 

where x is the Cartesian position vector on the surface of the unit sphere, introduced 
in 93.3 (x = u/R, y = b/R, z = c/R, x2 = 1). The introduction of vector X simplifies 
considerably the formulation of several important results, such as that of the first 
integrals; its components X ,  Y,Z also occur naturally in the following useful 
reformulation of system (4.2) : 

f U and V are positive quantities, in order that H and K may be real numbers. H and K were 
originally introduced as positive quantities ; however, their sign is relatively immaterial, as illustrated 
by the form of the equations of motion (3.24). 
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4.1. The second integral, cubic in the momenta 
We expect, by application of the PainlevC conjecture, the existence of a second integral 
to this system. Second integrals are notoriously rare, and their search time-consuming, 
especially if they do not exist; the Painleve property provides the motivation for the 
search. A new constant of the motion is indeed present, and it has the form 

I ,  = 4(T)(h-V)+['2(V3- 3 U'V' U' V' 
U' 

(4.5) 

In terms of the 3-vectors x and X ,  this can be written more compactly (and more 
symmetrically) : 

The energy integral E, in this notation, assumes the form 

I ,  = ~XYZ-  ( X ~ Z ) " ~  [X/X + Y/Y + 2/21. (4.6) 

;E = (x2+ Y ~ + Z ~ ) + $ / ( X Y Z ) ~ / ~ .  (4.7) 
X, Y, 2 being linked by the relation (B 8) (Appendix B), 

xX+yY+zZ = 0, 

equations (4.6), (4.7) implicitly define X ,  Y, 2 in terms of the position vector x and 
of the two integrals I? and I,; in other words, X ,  Y,  Z become known functions of U 
and V ,  since the latter are just another way of parametrizing the 2-sphere x2 = 1. 

Furthermore, we have, from (4.4), 

and that may be viewed as a$rst-order 0.d.e. for  the function V(U), since Y and Z are 
now known functions of the coordinates U. V. 

4.2. The integral invariant, and the solution by quadrature 
We have succeeded in reducing our problem to the first-order 0.d.e. (4.8) -where Y,  2 
are implicitly determined functions of U and V. To proceed further we remark that, in 
the form of (4.4), the differential system considered exhibits a fairly obvious integral 
invariant (see Goursat 1949), in the following way. Viewing u as the 'time', and (4.4) 
as representing motion in a four-dimensional space with coordinates U1lz,  ViZ,  Y,  2, 
the four velocity components are given by the denominators in (4.4), and it is clear 
without calculation that the velocity 4-vector is divergence-free. Thus the volume in 
that space : 

.Y = I... ~dU1/2dV112dYdZ, 

is conserved by the motion; that is the integral invariant. Such a property immediately 
entails integrability of (4.8) by quadrature (see Goursat 1949); in fact, (4.8) is now 
amenable to the form of an exact differential, d@: 

where the Jacobian is taken at U and V constant. In other words, the above Jacobian 
is an integrating factor of the first-order 0.d.e. (4.8). 
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With this result, our task is in principle completed; in the following subsections we 
present some properties of the general solution, and also discuss some remarkable sub- 
sets of solutions. 

4.3. The solutions in the case where the second integral I,  vanishes 
When I, = 0, the essential and surprising result is that V2 and U 2  are linearly related as 

v2 = ctu2+p, (4.10) 

where ct and p are two constants, algebraically related by the cubic equation 

where 
(4.1 1) 

(4.12) 

We remark that equations (4. lo), (4.11) fully specify the trajectories of the point-mass 
on the unit sphere - since (U,  V )  is just a particular coordinate system on the sphere. 
Let us now give a derivation of these results. 

First, we would like to simplify as far as possible the expression for the functions 
Y(U, V), Z(U, V) which appear in the 0.d.e. (4.Q and which have been up to now only 
implicitly defined through the equations (4.6), (4.7) and (B 8). Let us introduce the 
ratio : 

a EE -+) Y v l I 2  

z u  (4.13) 

(later to be identified with the ct occurring in (4.10)): the first-order equation (4.8) 
becomes 

VdV 
UdU 
- = a. (4.14) 

In terms of Z and a (instead of Y and Z ) ,  the definitions (4.6), (4.7) of the two integrals, 
I? = grn and 12, read 

(4.15) 

where 6 = 1 + U 3  + V3 as usual, and 

(4.17) 

The latter expression suggests introducing a new variable /3 defined by? 

p =  v2-ctu2; (4.18) 

conversely, V = (aU2 +p)l” may be eliminated in favour of p. In practice, we will 
merely eliminate even powers of V (and odd powers of degree higher than unity), 

t p is the image of a under permutation of a and b (see Appendix B); therefore, in view of 
definition (4; 13) of a, we must have p = - ( X / Z )  PZ. Equation (4.18) then merely expresses the 
equation: x . X =  0, and the definition (4.19) of D is simply: D = ( V / Z 2 ) X x 2 .  
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retaining the symbol V as a convenient abbreviation for (aUz+p)1/2;  the definition 
(4.16) of D may thus be written 

D = a 2 U + p 2 $  V,  (4.19) 

and the expressions (4.17) for the second integral becomes (using (4.15) to eliminate the 
Z 2  term) 

(4.20) 

where N(a, p) is the cubic function of a and ,L? defined by (4.1 1). 
Let us now set Z, = 0; we obtain 

an encouragingly simple result. The above equation (4.21) defines a function P(a), and 
(4.18) may then be viewed as implicitly defining a function a (U ,  V ) ,  whose exact 
differential turns out to be 

Vd V -  aU d U 
+da = U z - N J N j  ' 

where N,, Np are the partial derivatives i3N/aa, aNIC7P. 
0.d.e. (4.8), or (4.14), isjust  

the integrating factor being, U 2  - NJN,.  

a(U, V )  = constant, 

(4.22) 

Thus the general solution of the 

(4.23) 

That completes the proof of (4. lo),' (4.1 l), since a has been identified with the 

Let us now examine the form of these solutions as a function of u, the independent 
integration constant, and /3 is then also constant as a consequence of (4.21). 

variable. We need a rational parametrization of the trajectories (4. lo), e.g. 

(4.24) 

where cr is the parameter representing an arbitrary point on the trajectory; we wish to 
determine the evolution of cr as a function of u. Using 

V dU=-c"'"dlna, dV=-Uu'J2dIna,  

we obtain (see definition (4.4) of Z )  

- d ( u )  
a(aU)"2 ' Z =  

and then, substituting it in (4.17) where Z, = 0, we find 

where P4(a) is the fourth-degree polynomial 

2cr3 
P 

P4(fT) = cr* - __ (1 + a39 + 2a( 1 - a39 - p'. 

(4.25) 

(4.26) 

(4.27) 

(4.28) 
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a thus turns out to be the elliptic function of u defined by 

(4.29) 

The invariants (Goursat 1949) associated with that elliptic function are 

g 2 =Am 3 ,  g 3 - 2 7 ,  --1 (4.30) 

meaning that it is reducible to the Weierstrass canonical form 

W”(u) = 4W3-+mW-&, (4.31) 

e.g. through a homographic (or Moebius) transformation. The transformation is 
explicitly given in Appendix C. It is remarkable that the invariants (4.30), and hence 
the Weierstrass function, do not depend on the value of the integration constant a. 

For an elliptic function of the type (4.29), the associated Weierstrass function 
assumes the form 

a’(u) a”’(u) 2W(u) = -----+--, 
1/3a1I4 6a 

(4.32) 

up to arbitrary translations of the independent variable. Conversely, ~ ( u )  can be 
obtained in terms of W(u) as 

’ (4.33) 
[1 /3d4  W’(u) + (W/p)  (1 + a3I2) + (a3i2 - l)/(6a1l2)] 

[2 W- (a3/2 + 1)2/(6,82a1/2)] a(.) = 

which constitutes an explicit solution for the unknown .(u) as a function of the 
integration constant a ;  as already remarked, the function W(u) does not depend on a, 
and thus the solution’s dependence on the integration constant is purely algebraic; we 
shall return to that point in the next section. 

It is worth noting that the formula (4.33) can be considerably simplified through the 
introduction of two new constants h and p :  

which are related by 
4p2 = 4h3 - imh - +. 

(4.34) 

(4.35) 

In terms of these, one may introduce the ‘spectral-function’ ~ ( u )  associated with the 
Weierstrass function, satisfying the pair of equations : 

(4.36a, b)  

(the latter having the form of a one-dimensional Schrodinger equation for the wave- 
function 2); the formula (4.33) then takes the simple form 

(4.37) 

When m = 1 (i.e. l? = g), the elliptic solutions degenerate to trigonometric ones; this 
interesting special case is presented in Appendix D. 
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4.4. The general solution ( E  and I ,  both arbitrury) 
We have seen in $4.2 that the first-order 0.d.e. (4.8) to which the problem has been 
reduced, is expected to have the integrating factor ?(m, 12)/c1( Y,  Z )  (Jacobian taken at 
U and V constant). The partial derivatives involved being 

(4.38a) 

(4.386) 
one obtains the following result for the Jacobian: 

where, by definition, 

(4.39) 

(4.40) 

Thus equation (4.8) admits the integrating factor Y, and may be written in the exact 
differential form (see (4.9)) 

Vd V -  CZU dU 
Y 

d@ = 3 (4.41) 

generalizing the result (4.22) of the preceding subsection. 
The above equation (4.41), d@ = 0, is an 0.d.e. for the unknown function V(U) ,  a 

being an implicit function of U and V determined by the equations (4.10), (4.15), 
(4.20); to verify that Y is really an integrating factor, we need the partial derivatives 
of a, which are found to have the form 

2a - -2a 4N 9aN + 3N(U2-mV) ---+- 2-__ 
c?U U t Y (  U D )  2 Y(3m U V -  8)' 

C?CC +2a 6 (map-1) 3 3 N ( V 2 - ~ U )  
2Y(3mUVV-8)'  

+--- - 
av v +F( v 

Another quantity of interest is the total derivative : 

(4.42) 

If we note that an alternative expression of Y reads 

$Y = V(mV- U')+aU(mU- v"++(U+aV)(S-33mUv)/D (4.43) 

we obtain for da/du the simple result 

(4.44) 

or, equivalently, 
d a  -21, - 
du-m' 



128 B. GafSet 

factor in equation (4.41) is 
It is easily seen that the condition that Y must satisfy in order to be the integrating 

(4.45) 

direct computation of dY/ldu shows that the equality does hold, as it should. 
Unlike the case where I ,  = 0, it does not seem possible to perform the required 

quadrature (4.41) in closed form, CL being no longer constant; the functions U(u), V(u) 
cannot be obtained explicitly either. We remark however, that the system considered, 
having the PainlevC property, is expected to have a Backlund transformation; the 
latter, although of non-algebraic form in general, is expected to become algebraic in the 
case of 0.d.e.s; the existence of such a transformation would naturally explain the 
algebraic relation between solutions found in the case I ,  = 0 (equation (4.33)) and the 
occurrence of the over-determined spectral function x (equations (4.36), (4.37)); it 
would similarly entail an algebraic relation between the solutions of (4.41) corresponding 
to different values of the integration constant @. We expect that, in its infinitesimal limit, 
the Backlund transformation should be a combination of (infinitesimal) translations of 
u and of the symmetry generator associated with infinitesimal variations of @; its 
complete determination, in finite form, is currently in progress. 

5. Discussion 

vanishes : 
The discussion will be restricted for simplicity to the cases where the first integral I ,  

I ,  = 0; 

such solutions involve the two integration constants, a, /3, a third constant m which is 
related to them by 

and they have been shown to be describable by elliptic functions. 

N(a, /3) = a3 + P3 + 3ma/3- 1 = 0, (5.1) 

5.1. The physical domain of variation of the integration constants 
First we observe that the constants may not be chosen fully arbitrarily: there are 
unphysical regions in the (a,,B)-plane which must be excluded, as we now show. To 
start with, equation (4.18) manifestly excludes the quadrant {a < 0, /3 < O}. Another 
important constraint is that the variables (U,  V )  must always be positive, since H and 
Kmust be real; let us then consider the potential energy term, 6/UV7 in the integral of 
energy (equation (4.15)) : we have the identity 

6-3UV= ( U 3 +  V3+l)-3UVe (U+V+1)[U2-UV+ V2-U-V+1], (5.2) 

where the second factor is a quadratic form that always remains positive (vanishing 
only when U = V = l), and the first factor is positive too, since U and V take only 
positive values; the potential energy term is therefore bounded from below: 

6 
__ 2 3. uv (5.3) 

The kinetic energy term being of course positive, the energy integral (4.15) thus 
provides a constraint on m = 28/9: 

m a  1. 
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FIGURE 1. There are three physically meaningful regions I, I1 and I11 in the plane of the integration 
constants a and p ( I2  = 0 ) ;  the curves m (cL ,~)  = constant fill these three regions when m varies from 
+ 1 to + co. The three regions are interchanged by permutation of the ellipsoid’s axes a, b, c and 
therefore represent identical flows. The lines a = - 1 and p = - 1 are the images of the symmetry axis 
a = p, by permutation; all three lines intersect at (a = - 1, p = - I ) ,  which is an isolated real point 
on the curve m (a,  p) = 1. 

That excludes three regions in the (a,  /3)-plane : 

a region in the quadrant (a > 0, p > 0), where a + /3 > 1, 

a region in the quadrant (a  > 0, p < 0), where a + p < 1, 
a region in the quadrant (a < 0, /3 > 0), where a + /3 < 1. 

This leaves only three physically accessible regions, denoted I, I1 and 111 (see figure 1); 
furthermore, these three regions in fact represent the same physical flows, being related 
by the permutation group of the axes a, b, c discussed in Appendix B: the permutation 
(S*), which exchanges a and b, also exchanges a and p, and accordingly maps region 
I1 into region 111; and the permutation (s”),  which exchanges b and c, operates on a, 
/3 according to - 

2 = l / a ,  p = -/3/a, (5.4) 
thus mapping region I into region 11. 

That symmetry property enables us to exclude without loss of generality region I11 
(where a < 0) from our consideration; the constant a’’‘ which occurs in the 
parametrization (4.24) of the trajectories is then real. 

The curves m(a, p) = constant play a fundamental role; their essential properties are 
described below : 

The curve m(a, p) = 1 is the straight line a +p = 1 ; this is the limit line where the 
elliptic function W(u) becomes trigonometric. 

The curves m(a,,O) = C, when the constant C increases without limit, get closer 
and closer to the axes a = 0 and ,4 = 0; in the limit m --f co the elliptic function 
W(u) becomes lemniscatic (its two periods have the same modulus). 

The points (a = 0, /3 = 1) and (a = 1, /3 = 0) represent the axisymmetric solutions. 
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The curves m(a,,!?) = C have an asymptote: 

a+p = c; 
the point at infinity represents the axisymmetric solutions again (it is the image of 
the point (a = 0, p = 1 )  under the permutation (3)). 
The curves m(a, p) = C are symmetrical with respect to the axis a = p; the points 
on the axis - in the physically allowed range 0 < a, p < a - represent solutions 
with a special symmetry property, discussed below. 

Each trajectory in the ( U ,  I/)-plane presents several stationary points S, (i = 0,1, etc.) 
where U’(u) = V’(u) = 0. At such points the velocity variables X ,  Y ,Z  must vanish, 
hence Y/Z+ Yh/Zh, where the values of Yh and 2; are obtainable from equation 
(4.4); the definitions (4.13) of a and (4.18) of ,!? then give the result 

R4(+00) = +a, 

R,(O) = a > 0, 

R4(-00)=+C0,  

1 

R4(1) = 3(a+p-m) < 0 (sincem > 1 and a+/? < l ) ,  

R4(-1) = -(a+p+3m) < 0, 

The corresponding value of m follows from (4.1 l ) ,  but it may be found much more 
simply using (4.15) : 

(5.9) 
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FIGURE 2. The variation of the ellipsoid’s shape (U  = (ZI/~)~’/”, V = (c/a)”’”) during a half-period w of 
the independent variable u (= thermasy), assuming the values a = 1/3, p = 1/3, I ,  = 0 for the 
integration constants. If the expansion starts from rest at u = 0, it will terminate ( f +  GO) at a point 
u, between a quarter- and half-period: $J < u, < o. 

consist of an oscillation between these two points (figure 2). Whether a full oscillation 
effectively takes place, or more, or less, is a distinct problem that will be addressed 
later. 

Let us examine more precisely the form of this oscillation, in the two limits of the 
range of values of m. First, in the trigonometric limit (m + 1, a + p + I), the polynomial 
R,(U) has a double root: 

R,(U) (1 -CY) U 4 + 2 ~ U 3 - 3 U 2 + 2 U ( l - ~ ) + ~  
= ( U -  1)2 [ (1  -a) U2+2U+CY]. (5.10) 

The two positive roots are thus U,, = 1 = U,; consequently the motion, as m-2 1, 
consists of an oscillation of infinitesimal amplitude E between the two roots : 

1 - c  d U < 1 + c. The corresponding roots V,, 6 also tend towards unity: the 
expansion of the cloud proceeds with nearly spherical symmetry. 

for definiteness, we shall choose the point ( c Y , ~ )  in region I, so we have 

,8 + O+, 0 < CY < 1. The polynomial equation R4( U )  = 0 degenerates to U 2  = 0, which 
has the double root U = 0, the two remaining roots being removed at infinity. More 
precisely, the four roots are asymptotically arranged in the order { - co, 0-, 0+, + co): 
the motion therefore consists of an oscillation between a very small value U,, and a very 
large one U,. Asymptotically, we obtain 

In the lemniscatic limit, we have : p- 0, CY > 0 and m - (1 - a3)/(3ap) + + co ; 
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Thus, starting from an extremely flat disk configuration (S,), the motion proceeds 
towards a very elongated cigar-shaped one (So), and vice versa; again, the question of 
what fraction of an oscillation effectively takes place is not immediately answerable 
without calculation. 

To summarize, the oscillation has an amplitude that decreases progressively as m + 1 
(where the expansion becomes purely spherical), and increases without limit as m + co. 

Having discussed the effect of varying m, we now turn to a consideration of the effect 
of varying the remaining parameter a, m being kept fixed. There is no loss of generality 
in assuming the representative point ( c c , ~ )  to lie in region I ;  further, owing to the 
symmetry about the diagonal axis a = p, we may even select the upper-half of region 
I, where /3 > a. In this region a curve m(a,/3) = constant is bounded by the point 
(a = 0, /3 = 1) and by another point on the main diagonal where 01 = /3. The first point 
represents the limiting case of a purely axisymmetric expansion, with V = 1, i.e. a = c ;  
the qualitative behaviour of such flows is known and will be briefly summarized below 
(55.2). At the second point, where the integration constants a and ,8 have equal values, 
and the coordinates (U,, V,) at a stationary point are accordingly related by 

v: = U,(Ui+ 1)/(U0+ l), (5.12) 
the trajectories in the (U ,  V)-plane are invariant under the permutation (S*). In 
particular, the stationary point S, is the image of So under (S*)  - that is to say, we must 
have 

u, = l/Uo, v, = V,/uo. (5.13) 
The relation between So and S,  being a mere permutation of the axes a, b, c, we see that 
the shape of the ellipsoidal cloud is the same in the initial state So as in the opposite 
limit S, of the oscillation. More generally, letting the elliptic independent variable u 
take values uo = 0 at So, and the real half-period value u1 = o at S,, the gas cloud 
assumes the same shape at values of u symmetrically disposed with respect to the 
quarter-period value, u = w / 2 .  It must be noted that, although its shape remains the 
same, the ellipsoid's orientation differs by a 90" rotation, since the axes a and b have 
been permuted. 

Let us finally mention that the diagonal a = p has images (by the permutation 
group) in regions I1 and 111, which are the lines p= - 1 and a= - 1, respectively. 

5.2. The endpoint of the expansion 
The mathematical theory developed in 54 gives us the evolution of the shape of an 
ellipsoidal cloud (i.e. of U and V )  as a function of the thermasy u. The scale R, and the 
correspondence between u and physical time t ,  are obtained through the following 
steps. First we compute the modified time variable t*, given by 

t* = -du + constant, sy 
choose an arbitrary value of the energy constant E, and obtain 

R = (!!)'I2 1 
cos ((22)1'2t*) 

from integration of dR/dt* = R[2(ER2 -,!?)]1'2 (see (3.13), 
time t is found: 

t = -  ;ER;-")"' ____ +constant 

(that is just the solution of the trinomial equation (3.10)) 

(5.14) 

(5.15) 

3.23)); finally, the physical 

(5.16) 
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It is essential to remark that, although the evolution may proceed an infinitely long 
time t ,  the corresponding range of values of the elliptic phase u remains finite : u --f u, 
as t + co ; therefore, only a finite number of oscillations between the limit points So and 
S,  may occur; and, as it turns out, the oscillation proceeds f o r  less than a half-period, 
at least in several important cases. 

We have seen that the moment of inertia R2 is related to the modified time variable 
t* (the canonical time appropriate to the reduced motion on the surface of the 2- 
sphere) as 

k / E  
c 0 ~ ~ ( 3 t * m ~ ' ~  + y?,,) ' 

R2 = (5.17) 

where $o is an arbitrary constant phase. 
Considering for simplicity the case of an expansion starting from rest at the 

stationary point So at time t" = 0, we must set $o = 0, since R then initially vanishes 
(recall that R does not necessarily vanish, at a stationary point Si: it is only U and 
that have to be zero there); the end point of the expansion therefore occurs at 

(5.18) 

The corresponding value u, of the elliptic phase u (starting from u = 0 at point So, and 
hence u = w at point S,) is given by (see equation (5.14)): 

(5.19) 

Finding the endpoint of the expansion thus involves calculating the above elliptic 
integral; complicated as it may seem, it is nevertheless integrable in terms of the cr- 
functions of the elliptic theory. 

To perform the required integration, one should first re-express the integrand in 
terms of the Weierstrass function W(u): this is achieved simply by means of the 
parametric representation (4.24), where the parameter rr itself is known to be a 
homographic function of W(u); as a result, U must have the form 

u = Pz(W>/QdW,  (5.20) 

where P2 and Q, are second-degree polynomials; and the integrand UV/S must have 
the general form 

uv/& = P,(w>/!2.5(w), (5.21) 

where P,, Q, are polynomials of the sixth-degree. The rational fraction P6/Q,  should 
then be decomposed into simple elements, and the result will qualitatively depend upon 
whether the denominator Q, has multiple roots or not; this is then a point worth 
investigating. 

In fact, it is simpler to write down the equation Q,( W )  = 0 in terms of the variable 
c rather than W ;  let R,(c) = 0 be the resulting (sixth-degree) polynomial equation in 
cr: since cr is a homographic function of W, the questions of whether Q, and R, have 
multiple roots are equivalent. We obtain 

R&a) = ( a 3 1 2  - 1) cr6 + 3/3e4(a"2 + 1) + 8a3I2c3 + 3p2c2(a3/2 - 1) + $(a3/' + 1) 

(5.22) 
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and its discriminant is the product of factors: 

(a3-1)(/?3-1)(a3+p3)(~3+/?3-1). (5.23) 

It is easily seen that, the point (a,/?) being constrained to lie in one of the physically 
allowed regions, this discriminant vanishes only at three points : (a  = 0, p = I), (a = 1, 
p = 0) and (a  = 0 = p); we conclude that, with the possible exception of these three 
points, the calculation of t* is fully reducible to integrals of the type 

s W(u) du - a’ 
where a is a constant. 

function, except for a constant normalization factor: 
In the axisymmetric case, with, e.g. U z 1, the variable V itself is the Weierstrass 

V 3 -~W(U),  (5.24) 

and the integral giving t* becomes simpler : 

Vdu 
t* = sm. (5.25) 

The axisymmetric case was also considered in Dyson’s work (1968, p. loo), where it 
is stated that the evolution changes a cigar-shaped cloud into a disk-shaped one, and 
vice versa; that means that u, must lie somewhere between a quarter-period and a half- 
period : 

;w < 24, < w .  (5.26) 

The only case where a definite answer can be obtained in a simple way is the 
trigonometric limit (m+ l), where t* z u/3 ,  and hence u ,  = n/2. 

The half-period w is generally given by (see Appendix C): 

(5.27) 

where W, < W, < W, are the three real zeros of W ( u ) ,  in that order, 
v = ( W, - W3)/( W, - W,) is a universal (and algebraic) function of m only, and K(v) is 
the well-known complete elliptic integral of the first kind, which takes the value 
K(0) = n/2 at v = 0. 

When m = 1, we obtain: v = 0, W, = 1/3, W, = W, = - 1/6, and the half-period 
w = n/2/2; hence the oscillation, starting from rest at a stationary point, terminates at 
elliptic phase : 

u, = w / d 2 ,  (5.28) 

again a value intermediate between a half- and quarter-period. 

5.3. The evolution of oblateness in the course of expansion 
The trajectories in the (U,  V)-plane present the remarkable property of passing three 
times (during a half-period) through an axisymmetric Configuration : first a prolate 
spheroid, then an oblate, then again a prolate configuration. This general behaviour 
may be illustrated with the following two typical examples chosen in the lower-half of 
region I (where a 2 /?). The first example corresponds to a point on the main diagonal: 
01 = p = 1/3, m = 25/9; while the second, with parameters a = 0.9, ,8 = 0.05, 
m = 2.006 ..., lies close to the axisymmetric limit at (a = 1, /? = 0) where the functions 
U(u) and V(u) become identical. 
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FIGURE 3 Evolution of the measure of oblateness 5 (defined in Appendix E) for the case a: = 1/3 = /3, 
1, = 0, during a half-period 0 < u < 0. (For prolate (resp. oblate) spheroids, 5 > 0 (< 0)). Cases 
a = /3 are characterized by a symmetrical evolution with respect to the quarter-period axis The three 
crosses mark the passage through an axisymmetric configuration 

We have plotted in figures 3 and 4 the evolution during a half-period of the shape 
parameter 5 introduced in Appendix E, which is a measure of the oblateness of the 
ellipsoidal cloud (5  varies from - 1 for a flat disk to zero for a sphere and + 2 for an 
extreme prolate spheroid). The most striking feature of figure 3 is its exact symmetry 
about the axis u = w / 2  (as predicted in 05.1); in that case the ‘half-period’ becomes a 
full period. The generally decreasing profile of figure 4 prefigures the exactly 
monotonic result appropriate to the axisymmetric flows. Two out of the three 
axisymmetric configurations, at U = 1 and V = 1 respectively, are nearly spherical; 
whereas the other, at U = V = 1 / \  2 in our example, tends in general as p+ 0 to the 
spheroidal limit U = V = l /m1’2. Choosing values of (a,P) less close to the 
axisymmetric limit would of course result in a diagram for ((u) intermediate between 
those of figures 3 and 4. 

6. Conclusion 
We have here considered Dyson’s model of an adiabatically expanding ellipsoidal gas 
cloud, and have shown that, under certain restricting assumptions, it turns out to be 
a completely integrable model. The crucial assumption leading to integrability appears 
to concern the equation of state of the fluid, which we have taken to be the monatomic 
ideal gas, characterized by an adiabatic index y = ( N + 2 ) / N  in a space of dimension 
N -  hence y = 5/3 (although the values y = 2 and 3 may also be physically relevant, 
in the more special cases of planar motion and of one-dimensional motion). We have 
in addition neglected for simplicity the effects of rotation, so that the integrable model 
presented here represents a deformable expanding cloud of tri-axial ellipsoidal shape, 
the principal axes maintaining a fixed orientation in space. 

The clue to uncovering the integrability property of this model was the realization 
that some of the physical variables involved were uniform functions of a well-chosen 
independent variable - not the time t ,  but the thermasy : u = [ Tdt, which is one of the 
potentials occurring in the Clebsch transformation of the velocity field. In other words, 
the evolution of the system was governed by differential equations whose general 
solution was free of (movable) singularities other than poles: such systems are said to 
possess the Painleve property (Ince 1956) and have been conjectured to be completely 
integrable (Ablowitz & Segur 1977). Unfortunately, for ordinary differential systems 
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FIGURE 4. (a) Same as figure 3, for the case a = 0.9, /3 = 0.05 ( I ,  = 0), close to the spheroidal limit 
p+O. Note the nearly monotonic variation of 5, characteristic of axisymmetric ellipsoids. (b) A 
magnified view of the central kink in (a); two of the three axisymmetric configurations (marked by 
crosses) are nearly spherical and coalesce in this small central region, as /I+ 0. 

(which is the case here), the Painleve conjecture provides no systematic method to 
perform in effect the integration. We have nevertheless been able to construct the 
missing first integrals and to complete the integration by reducing it to quadratures. 

The solutions obtained have an essentially different character according to whether 
the second integral of the motion (denoted I,) vanishes or not. We remark that, for 
motions starting from a state of rest, the second integral I, does vanish, being of odd 
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parity in the velocities (see (4.5)); such motions are describable by elliptic functions. 
The elliptic case describes even more general flows: it is sufficient, in order that I, = 0, 
that the initial condition be a state of homologous expansion, i.e. that all three 
principal axes be initially expanding in the same proportion. 

When I, $: 0 on the other hand, no such simple result obtains; we expect that, given 
one solution arbitrarily, there should exist a one-parameter family of new solutions 
algebraically related to it, as a result of the existence of a Backlund transformation (see 
94.4); this, however, remains to be confirmed. 

Appendix A. The Painleve property 
The question of the integrability of a differential system has long been known to be 

connected with the system being endowed (or not) with the Painleve property (Ince 
1956). That is the property of a system whose generic solution admits only pole 
singularities in the complex plane of the independent variable (u, say), with the possible 
exception of a certain number of singularities of another type (branch points, etc.. .) at 
fixed locations in the complex plane. It has been conjectured (Ablowitz & Segur 1977) 
that any system passing the Painleve test must be completely integrable, in a certain 
sense. One of the main practical difficulties in establishing the Painlev6 property lies in 
the appropriate choice of the independent variable; it is relatively easy to show that, 
in the case of an axisymmetric ellipsoidal gas cloud ( H  = K ) ,  the correct choice is to 
identify u with the thermasy, and that the function U = H2I3 thenpossesses the Painleve' 
property, being an elliptic function of u. We now extend this result to the general case 
of a tri-axial ellipsoidal cloud. 

Let us start with the formulation (4.2) of the system: a search for the singularities 
of the solutions U (u) to (4.2) brings to light the following two types: 

Case (i): U - a,/u, where a, is a non-zero constant, and u-t 0 (there is no loss of 
generality in assuming the singularity located at u = 0, in view of the invariance of the 
system under arbitrary translations of u). The function Y has then a simple pole 
singularity as well : 

V - b,/u, where a,b, = -3/4. 

Case (ii): U - -6/u2, and then V-t 1. (There exists, of course, another singularity 
type symmetrical to Case (ii), in which V - - 6 / u 2  and U+ 1. The reason we do not 
include it in the list of singularity types of the function U(u), is that the latter then 
remains perfectly regular.) 

Let us then proceed with the Painleve test, starting with the singularity type (i); the 
test requires pursuing the expansion until all free parameters (= integration constants) 
have been found; the result is as follows: 

U = a,/u + a, + a2 u + ku2 + . . ., V = b,/u + b, + b, u + lu2 + . . ., (A 1) 
where a,,a,,a, may be viewed as the three integration constants (the fourth being 
provided by the arbitrary translations of u), and b,, b,, b, are related to them by the 
symmetrical formulae : 

a,b,=-3/4, a,b, =a,b,, a,b2-2a,b1+a,b,=0. (A 2) 
The u2 terms, with coefficients k,  I ,  are shown here only to indicate the absence of 
logarithmic terms ulnu that might have occurred; the values of the constants k ,  1 are 
functions of the integration constants, and need not be explicited. The essential point 
is the presence of the full complement of four integration constants in the expansion 
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(A l), meaning that it represents the behaviour of the generic solution to (4.2). Thus, 
(4.2) does pass the Painlevt test, as far as the present singularity branch - referred to 
as branch (i) hereafter - is concerned. 

Turning to Case (ii): when the leading term in the singular expansion is the double 
pole : U - - 6 / u 2 ,  we obtain the following result: 

(A 3) 
-6 
U2 

u= - - - 3 ~ ~ + ~ ~ 2 + k u 4 +  ..., v =  1 +hu3+lu6+ ..., 

where the constants h and p are arbitrary. This expansion thus involves only two 
arbitrary parameters (A, p) instead of the three required for the expansion to be generic. 
In fact, linearization in the form 

-6 
U 2  

u = --(I +d) (€ + 0, u + 0) 

yields the values of the exponent n (called resonances) where the arbitrary parameters 
must occur; they are, in this case, 

n = -4, - 1,3,4. 

The value n = - 1 corresponds to the arbitrary translations of the singular point; the 
value n = -4 however is incompatible with the leading term being -6 /u2 ,  and that 
explains why one integration constant is missing. Thus the expansion of this branch 
(called branch (ii) in what follows) is non-generic. The point however, is that the 
branch is nevertheless free of logarithmic terms, and of any singularities other than 
poles, and thus it does not spoil an eventual Painleve property of the system. 

In conclusion, the Painlevt test applied to both singularity branches (i) (generic), and 
(ii) (non-generic) indicates that the system (4.2) does possess the Painleve property 
(with the thermasy u as the independent variable), and is therefore completely 
integrable, if the Painleve conjecture is indeed valid. The PainlevC conjecture 
unfortunately does not specify how to proceed with the integration, but it does 
encourage us to look for further constants of the motion, which should be present if 
the system is integrable at all. 

Appendix B. The permutation group of a, b, c 
We must say a word about the presence of discrete symmetries of our system (4.2), 

which reflect its invariance under the group of permutation of the three principal axes 
a, b, c.  

Let us recall the definition of the unknown functions U(u) and V(u), in terms of 
ratios of principal axes: 

U3I2 f H = b / a ;  V3I2 = K e c/a. (B 1) 
Exchanging the roles of a and b, one obtains a first (reciprocal) symmetry of the 
equations, denoted (S*) ,  which has the following action on variables : 

u+ u* = 1/u,  v+ v* = v/u (B 2) 
without affecting the independent variable u. On the other hand, if we interchange the 
roles of b and c, the result is a symmetry (3) whose action is simply given by 

6= v, F =  u. (B 3) 
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We observe that the first integral E is invariant under the action of both (S”) and (s”);  
in fact, the kinetic and the potential terms in l? are separately invariant. 

It is possible to rewrite the system (4.2) in manifestly invariant form, in the following 
way. In terms of the Cartesian position vector x introduced in $3.3 (x = a/R, y = b/R,  
z = c /R,  x2 = l ) ,  the equation of motion ( 4 . 2 ~ )  takes the form 

Introduce the 3-vector X ,  with components X ,  Y, Z,  defined by 

(Xis thus proportional to the (non-conserved) angular momentum vector of the point- 
mass moving on the unit sphere) ; equation ( 4 . 2 ~ )  becomes 

and equation (4.2b) 

To make the system manifestly invariant under permutations of x, y ,  z ,  we need only 
complete the above equations (B 5) ,  (B 6 )  by a third equation: 

which may be shown to be a consequence of the other two. 

(B 4), the three components X ,  Y ,  Z are linked by the simple relation 
It is worth pointing out finally that, as an immediate consequence of the definition 

x . x =  0. (B 8) 

Appendix C. Determination of the main parameters of the flow, given the 
initial ellipsoidal shape 

The initial values a,, b,, c, of the three principal axes are given, and the motion starts 
from rest (in fact, R need not vanish: it will be sufficient to assume here that the ratios 
b /a ,  c / a  are initially stationary; that is our definition of a ‘Stationary point’). The 
initial shape fixes the coordinates U,,, V, of the corresponding stationary point So: 

u, = (bo/a,)2’3, vo = (c,/a,)”‘”. (C 1) 
The integration constants a, that determine the trajectory in the ( U ,  V)-plane are then 

U,(V;- 1) (U,”- V,”) 
a =  

v,(U;-l)’ p =  y)(U;-l)* 

and the third constant m, which is a function of a and ,4 (see equation (4.11)) is 
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The parameter m fixes the relevant Weierstrass function W(u), whose extrema play a 
fundamental role and are given by the cubic equation 

4W3-+mW--& = 0. (C 4) 

In the physically allowed range of values of m( 1 < m < + co), the cubic has three real 
roots W,, W,, W,, arranged in the order: 

w,<-;< W,<O<$< W,; (C 5)  

to find the roots, we introduce an angle 4: 

(i = 1,2,3) 
1 

COS(3q5J = ~ m 3 ~ 2  

(q5 is only determined modulo 27c/3, hence the index i; its sign is immaterial), and we 
obtain 

W,  = $n1/2 cos (q5J. (C 7) 

The parameter v = ( W, - W,)/( W, - W,) plays a fundamental role in the elliptic theory; 
choosing the appropriate determination of @ (that which makes 0 < v < f), we have 

(C 8) 
2 

1 + .\/3 cotan(@) * 
v =  

The constant m is algebraically related to v as 

m3 - (v2-v+1)3 
4 (v-2)2(2v- 1)2(v+ 1)2. 

- _  

The expression (C 7) for the roots Wt may also be written 

W, = k(2-~)/3,  W, = k(2v- 1)/3, W, = -k(v+ 1)/3, (C 10) 

where 
k , l (  112 . 

2 v2-v+l 

As shown in 95.1, there exist four stationary points So, S,,  S,  and S, (two of them, 
S, and S, say, falling in unphysical regions), where U’(u) and V’(u) simultaneously 
vanish; the corresponding values U,, U,, U,, U, are the roots of a quartic equation: 
R,(U) = 0. One of its roots (U,) is already known, and it turns out that the equation 
may then be solved exactly :? 

(the fourth root, U,, may also be found from this formula by substituting the value zero 
for W$). By symmetry, the values V ,  of Vread 

Its resolution involves finding the value of an elliptic function for halfthe value of the argument. 
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The values cri of the parameter cr on the trajectory are the roots of the quartic equation: 
P,(cr) = 0 (54.3); they are found in the form 

(C 13) cri = ( K. - V, a'/') (i = 0,1,2,3), 
and may also be written 

( i  = 0,1,2,3, letting W, = 00) 
6W,+U, &+lo cri = cro 
6Wi+ Uo Yn-lo 

where 

Moreover, equation (C 14) remains valid, not only at stationary points, but all along 
the trajectory; we have indeed the homographic (Moebius) relation between variables 
v and W :  

6W+U0V,+l, 
0- = CT, 

6W+ Uo Yn-lo- 

Finally, it would be useful to also have an explicit expression for U and V in terms of 
the Weierstrass function W(u). We introduce for conciseness the notation: 

w E 6W+ Uo V,, (C 17) 
so the expression (C 16) of cr simplifies to 

From the parametric representation (4.24), we expect that U should have the form 

P, being a second-degree polynomial. Under the permutation (S*)  of the axes a, b 
(Appendix B) U is changed to 1/U, therefore P,(W) must be proportional to 
( w * ~  - I,*'), where 

and w* = 6W+ V,/Ui; (C 20) 
in this way we obtain the explicit expression for U in terms of W(u): 

U - w*2 - I,*, 
U, w2-1; 
_ _  - 

with w, w* related to 6W by the translations (C 17), (C 20). 
Application of the permutation (3) yields the corresponding result for V :  

Y - w2-ti 
v, w2-1;' 
_ - _ _  - 

where 
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Appendix D. The trigonometric solutions 
The solutions presented below are solutions in real numbers of our differential 

system (4.2) for the unknown functions U(u), V(u) - but the values of U and V are not 
simultaneously positive: one of the ratios H = b/a,  K = c /a  must accordingly be 
complex. These solutions may nevertheless gain physical meaning in a different context 
(for example, Hamiltonian motion in a potential on the surface of an hyperboloid, 
rather than a sphere) ; they have the advantage of being entirely expressible in terms of 
elementary functions. 

As indicated in $5.1, the Weierstrass function W(u) introduced in $4.3 (equation 
(4.31)) degenerates to trigonometric when the parameter takes the value m = 1 (i.e. 
B = 3rn 2 = g), namely 

(D 1) W = l + l w 2  

where w = tan(u/l/2) (D 2) 
3 2 7  

up to arbitrary translations of the independent variable u. Hence we expect that the 
functions U(u), V(u) (which represent the evolution of the ellipsoidal cloud’s shape) will 
be expressible rationally in terms of w = tan(u/l/2). 

When m = 1, the cubic N(a,p)  (see (4.1 1)) becomes decomposable (cf. (5.2)): 

N(a,P) = (a+P- l ) ( a ” a p + p + a + p +  1) 

(a+P- 1) = 0. 

(D 3) 

(D 4) 

and there are thus two cases to consider: we shall treat the simpler one: 

(The curve corresponding to the vanishing of the second factor in (D 3) is entirely 
complex, except for an isolated real point: a = - 1 = p.) Then, according to (4.10) 

v2 = aUZ+(l-a). (D 5 )  
The spherical trajectories described by (D 5 )  may be parametrized by means of the 
parameter 7 = (V- l ) / ( U -  l), as 

T2 -27 + 01 - ( 7 2  - 2017 + E )  U =  , v =  
T 2 - a  ?-a 

We thus have 

and, following the method of $4.3, it is seen that the function 7(u) obeys the differential 
equation 

P ( u )  = (7 - a)2 [72 + 27(a - 1) - 011 
3 4  1 - CZ) 

which may be solved in the form 

where S(u) is proportional to w(u): 

S(U) (3a(l -a))’” w(u). 

This expression is readily solved for the unknown 7(u):  

S2+2aS+a(a+ 1) 
Sf(2a-1) ’ 27 = 
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as expected, 7 admits a rational expression in terms of S(u) or, equivalently, w(u). 
Rational expressions for the unknowns U and V may then be deduced through 
equation (D 6). namely 

(D 11) 
S4 + ~ S ’ ( ( U  - 1) -t 2S2(a- 1) (3a-2) +4aS(a2 - 1) +&(a- 1) (a2 + 1 ICY- 8) 

S4 + 4ctS3 + 2aS2(3a- 1) + 4ctS(a - 1) (a  - 2)  +CZ(CZ- 1) (a2 - 13a + 4) 
U =  

and a similar expression for V. 
We remark that we still have the freedom to perform an arbitrary translation of 

u : u i u + uo, and that induces a homographic transformation on the function 
S(u) E [3a(l -a)]”2 tan(u/V 2). The remarkable fact is that, through an appropriate 
choice of the translation parameter uo, the expressions for both U and Vcan be made 
even in the variable S, and may accordingly be simplified. 

We introduce a new parameter h in place of a, in order to have a fully rational result: 

CY = h(h + 2)/(hZ - 1) 
and obtain 

(D 13) 
9w4h2(h + 1) + 6w>’(h2 - 1) (2h + 1) + (h + 2)’(h - 1) (2h + 1) 
9w4h(h + 1) + 6w2h(h + 2)  (1 - h2) + (2h + 1)2(h + 2) (1 - h) ’ 

C’ =2 

together with an expression of the same kind for V :  

. (D 14) - 9w4h(h + - 6w2h(h + 2) (2h + 1)  + (h  - l)’(h + 2)  (2h + 1) V =  
9w4h(h + 1) + 6w2h(h + 2) (1 - h2) + (2h + 1)2(h + 2) (1 - h) 

Appendix E. An invariant measure of oblateness of tri-axial ellipsoids 
The shape of a tri-axial ellipsoid of axes a, b, c is fixed by the two ratios H = b /a ,  

K E c / a ;  these two quantities however may not directly be interpreted as representing 
the shape of an ellipsoid, not being invariant under relabelling of the three axes. Two 
related quantities may be constructed from Hand K, which have the property of being 
invariant : 

s - 1 + u 3 + ~ 3  
uv- uv ’ 

( U +  V-2)(U-21/+ l ) (V-2U+ 1) 

_ _ _  

and the product 

uv 
where, as always in the present work, U = H2I3, V = K2I3. 

Let us form the combination of these two invariants, denoted <: 

( U +  V-2) (U-2V+ l)(V-2U+ 1) y -  
3UV-6 

For an axisymmetric ellipsoid - e.g. one with I/ = 1 - 5 reduces to 

u- 1 “ U ;  v =  11 = 2- 
u+2 

(a monotonic function of U )  and is a measure of the oblateness of the ellipsoid: for a 
flat disk, Ci = 0 and hence 5 = - 1 ; for a sphere, U = 1 and hence < = 0; for an 
elongated (cigar-shaped) ellipsoid, U+ 00 and <+ 2. 
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Thus, 0 < < < 2 for prolate spheroids, and - 1 < 6 < 0 for oblate ones. For a 
general triaxial ellipsoid, we may retain the invariant 6 as a definition of its oblateness. 
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